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Abstract. Two new one-dimensional fermionic models depending ontwo independent parameters
are formulated and solved exactly by the Bethe ansatz method. These models connect continuously
the integrable Hubbard and supersymmetrié¢ models.

The Hubbard model together with theJ model are the most studied models describing
strongly correlated electrons. In one dimension they are a paradigm of exact integrability in
the physics of strongly correlated systems. In these models we have beyond a hopping term
(kinetic energy) an on-site Coulomb interacti@nin the case of the Hubbard model [1], or a
spin—spin interactiod , in the case of the-J model [2—4].

An interesting question in the arena of exact integrable models, that we wish to solve in
this letter, concerns the existence of a general exactly solvable model containing these two
well known models as particular cases. After the exact solution of these models [1-4], several
extensions which keep exact integrability were proposed, either by introducing correlated
hopping terms [5-12], or by including an anisotrogydeformation) [13—17] (see [18] for
a review). However, none of these extensions contains simultaneously the Hubbard and
models as particular cases. In this letter we present two new integrable two-parameter models
having this nice property. These models contain, as particular cases, the Hubbard model [1]
and the Essler—Korepin—Schoutens model [6], as well asdtsformed versions [14, 16, 17].

We remind the reader that the latter model [6] contains the supersymmefrimodel in a
particular sector.

Our starting pointis the introduction of a general one-dimensional Hamiltonian containing
all the possible nearest-neighbour interactions appearing in different exactly integrable models
with four degrees of freedom per site. This Hamiltonian thus contains correlated-hopping terms
in the most general form, spin—spin interactions as in the anisotropic versiontefitineodel,
Hubbard on-site interaction, as well as pair hopping terms and three- and four-body static
interactions between electrons. The Hamiltonian is given by

L
H=-Y Hjjn
j=1
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Hj; = Z(Cja o T NCO[L + 141m g + toonig + 1, jgnig]
a(#B)

+ Z (Jc;ac;ﬂcj,,gck,a + Vopnj otk g+ Vaalljalike) Y Unjing o Q)
a(#B)

+ 4+ 1) 2
+tp(cj’1cj’zck,zck,1 + hC) + V3 njong 1Mk 2 + V3 njing 1M 2
3) 4
Vo njanjong 2+ Vy njan;ong 1+ Vanjan ong ing 2

wherec; , andn; , = ¢} ,cja (e = 1, 2) are the standard fermionic and density operators. The
physical relevance of such a Hamiltonian is discussed, e.g., in [19, 20].

In (1) we have included a correlated-hopping interaction in its most general form, which
depends om,1, #,2 andz, (¢ = 1, 2). In the theory of exactly integrable systems, models with
such kinetic terms were first studied in [5, 21] and their possible physical relevance is given
in [22]. In the limitz,s = —t, = —1, this term gives a constrained hopping term and the
condition for |ntegrab|I|ty gives the anisotropieJ model atJ = €7V, = €' Vo = +£1,

t, =U = V3 = V4 = 0tf. The Hubbard model is obtained by destroying the correlation

in the hopping terniz,s = t/, = 0) and by setting, = J = Vio = Vo1 = V4’ = V4, = 0.

For the case wherg = 0 the conditions for integrability have been investigated in [11, 12],
and a two-parameter generalization of the correlated-hopping model has been contructed in
[12]. Recently, some one-parameter models witk¢ 0 have been constructed [16, 17, 23]

on the basis of solutions of Yang—Baxter equations of vertex models [16, 24, 25]. In this letter
we present the results of our investigation on the integrability conditions in the/cesé,

Vae = 0 andryp # 1.

We require the wavefunctions of the Hamiltonian (1), witklectrons, to be given by the
Bethe ansatz

= Z\If(rQl, Qs 370, ATy, o5 T,)

ar-0, T )
W(ry, ag; ... rn»an)—ZA - Q” Q X ZGXF(ikj)
j—l
whereQ is the permutation of the particles such that X rp, <rg, <--- <rg, < L, and
a = 1, 2 denotes the kind of particles (up or down spin). The sum is over all permutations

= [Py...P,] of numbers 12,...,n. In the case where we have a pair at the position
ro, = ro,.,, the ansatz is modified to
n
ro.
W(ry, 015 .. Py ) = ZA““ T B 3)
j=1

where the bar at thiegh and(l + 1)th positions of the superscript indicates the pair location. The
general case with many isolated particles and pairs follows from (2) and (3). The coefficients
Aoligl';;ag” from regions other thaRy = [rgp, < --- < rg,] are connected to each other by the
1---Ln ) x n
elements of the two-particl&-matrix
A == D Silykn kp) AT
o ,f'=1,2
As a necessary condition for integrability of the model under consideration, the two-particle

scattering matrix has to satisfy the Yang—Baxter relations [26,27]. Although we have not
solved this problem in the general case we were able to establish the exact integrability of (1)

T For these parameters the number of double occupied sites are conservedraidribdel is obtained in the sector
where there are no double occupied sites.
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in the two new cases, which we denote by models A and B:

(A)
t1—8t2—t3—8t4—sin19 s =¢
J=—et, = —EU V126" = Vye %! = cosy (4)
Vir=Vao=VP =v@P =vP =v® =v,=0
(B)
11 = str = s13€%" = 1,6 2 = sinY ts=¢
J = —et, = V12?1 = V&% = cosd
sin? 9 5
=21, + (& —ee)? )

Vin=Ve=VP=v?=v,=0 vP=-vP=Vvy,-Vy
where in (4) and (5) we denote
tni=t—1 to=t3—1 th1=1t—1 to=1t—1
fhh=ts—t3—fs+1 th=ts—t—f+1
wheres = +1 and®¥ andp are free complex parameters.
For 9 — 0 both cases reduce to the anisotropi¢ model studied in [6, 14], which is
the generalization of the supersymmetri model [2—-4]. More exactly, in this limit we
obtain theg-deformed extended Hubbard model [6, 14] in the sector where we have no double
occupied sites and where, in fact, it corresponds to the anisotrepienodel. Moreover,
from (1), (4), (5) we see that the model B with= i1, ¢ = +1, and the model A witly = 0,
¢ = —1, reduce to the non-triviaj-deformations of the extended Hubbard model considered
in [16, 17], respectively. These models have been constructed on the basis of the solution of
the Yang—Baxter equation for the-matrix which was found by [1625]. In the opposite
limit, ¢+ — /2, both models witle = 1 give us the Hubbard model, provide in model A
n=[In(U’) — In(cos®)]/2, and in model By = 3/U[¥ — 7/2].
The non-vanishing elements of the two-parti§tenatrix of both models satisfy

oo __ Ba
Ser =1 Sﬂ_S

Bor ) af (6)
Sep (X1,X2)Sa,g (x2, x1) = — S84, (x2, x1) S, ,g(XLXZ)
and for the different models are given by
(A)
SSS (x1, x2) = (x1 — x2)b12(x1, x2) /a1 (x1, x2) @
SZﬁ (x1, x2) = [co(x1, X2) + b1(x1, x2)x1 + ba(x1, X2)x2 — gx1x2]/a1(x1, x2)
(B)
Sjﬁ (x1, x2) = (x1 — x2)b12(x1, x2) /ax(x1, x2) ®)

S (1. x2) = [co(x1, x2) + (x1€7 " + x28b1a(x1, x2)] /a2 (x1, x2)
wherea < 8 and

ai(x1, x2) = colx1, x2) + [b1(x1, x2) + ba(x1, X2)]x2 — gx3

a(x1, x2) = co(x1, x2) + (€% + € 2")b1a(x1, x2)x2

bi(x1, x2) = (t2 +£J?€ 2"\ Dip+ J& 2 (x1 + x2)

ba(x1, x2) = (t7 + £ J?€*)D1p + J€ (x1 + Xx2)

b12(x1, x2) = €D12 + J (x1 + x2)

co(x1, x2) = (U — 2t,)x1x2 + [ty D12 — x1 — x2] D12

D1 =1+x1x7 g = cosy sir? 9 (e — e )2,
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To complete the proof of the Bethe ansatz (2) we must check the eigenvalue equations in
the sector where the total number of particles is 3, 4. This gives a complicated system of
equations. A manipulation of this problem on a computer gives us the values of the coupling
constantsvgf’) andV, in equations (4) and (5). The periodic boundary conditions on the lattice
with L sites lead us to the Bethe ansatz equations. In order to obtain these equations we must
diagonalize the transfer matrix of a related inhomogeneous six-vertex model with Boltzmann
weights (6). This latter problem can be solved by standard algebraic methods [28]. The Bethe
ansatz equations are written in terms of the variable; = exp(ik;)) and additional spin
variablest(V.

For both models we have

Gl = D ] s, x8) j=1....n
a=1

9)
n m Si.%(x;l)’ x(gl)) (
[[sa.x" = [] o a—m  J=L...m

j=1 C ke SBOE X
wherem < L is the number of particles with up spins. The eigenenergies of the system are
given by

E=- Z(xj +xj_l). (10)
j=1

An important step toward the solution of integrable models, in the thermodynamic limit,
is the definition of new variables; = A(x;), in terms of whichsﬁ(x,-, x;) becomes afunction
only of the difference.; — 1 ;. The corresponding integral equation derived from (9) will then
have difference kernels. Following Baxter [27], we introduce a function

1 1+e2d(xq, x0)
A(x1, =—-In—n———
(1 x2) = SN T S . 1)

wherer is the Baxter parameter, for which our models has the values

®(x1, X2) = Sia(x1, X2) (11)

cosh2 — et? + J?cosh g for model A 12)
cosh 2 for model B.
It follows (see [27]) that the functioh(x1, x2) has the nice property

A(x1, x3) = Alxy, x2) + A(xz, x3) (13)
which implies

A(xg, x2) = Alx1) — A(x2). (14)
Using (11) and (14) we rewrite the Bethe ansatz equations in the difference form

2osinh(y; — A — 7
(XJ)LzﬂsinT(l()»jj—kzl”r)) Jmben
(15)

a=1...,m.

li[ sinh(; — AP —r) ﬁ sinh(g” — 20 — 2r)
j1 sinh(; — a8 +7) g1 Sinh(A) — A8 +2r)
From (13), (14) we have; = A(x;) with A(x) = A(x, u) + v, wherep andv have arbitrary
values. For example, we may chogse= 0 andv = r for our convenience. The function
@ (x, 0) has the same form for both models, namely

1 1+e?d(x,0) _ —x(e+Jx)
)\.(X)—élnm'Fr @(X,O)—W (16)
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The inversion of (16) gives us

—J~Ycoshx sinhr & v/sink? A cost r + cost A sint? r tar? o

X = - g=+1
sinh(A +r) 17)
J-1sinhx coshr + v/cos? A sint? r + sint? A cost  tar? .
= - &= —1.
* sinh(A +r)

Itis clear from (16) that the Bethe ansatz equations have the same form for both models at the
same values of the parameterand.

Let us consider the Bethe ansatz equations in some limiting cases. At-€esl we
obtainx; = sinh(x; — r)/sinh(x; + r) and (15) gives us the Bethe ansatz equations of the
anisotropic supersymmetrie-J model, with anisotropy [14]. In our derivation of (15) the
amplitudes in the eigenfunctions, corresponding to double site occupations, are related to those
with single occupancy. Strictly at cos= 1, this assumption is not valid, unless there is no
double occupancy as in theJ model, and we should restriet< L in (15).

In the limiting case of model B witle = 1, where co#8 — 0,n — 0, withU =
4n?/ cosy fixed we obtain from (5) the Hubbard model with on-site interactioe: U. The
relation (12) gives us = /U cog®)/2 and by choosing; = i(x/2 — 2 sink\/cos?)/U),

A;” =i(n/2—2A,/CogD)/U) we obtain the Bethe ansatz equations of the Hubbard model
[1]

eikjL _ ﬁ Sinkj — Aj — |[j/4

S aisink;—A;+iU/4
li[ sink; — A, +iU/4 lﬂ[ Ap— A, +iU/2
jasink; — A, —iU/4 5 Ag— Ay —i0/2

The Hubbard limit can also be obtained in the limiting case of model A with 1 where
cos®? — 0,7 — oo, butU = Vo1 = €7 cog)/2 kept fixed. In this case we see from (5) that
shiftingc; » — c¢;j_12, we recover the Hubbard model with on-site interactions V,;. The
Bethe ansatz equations (18) are obtained from (15) by choasing i(w/2 — 2e7" sink;)
andAd =i(7/2 — 2e7A,).

It is also interesting to observe that rational Bethe ansatz equations can also be obtained
for both models in the limit where — 0 orr — iz /2. We should remark that even in this
case we obtain new integrable quantum chains. For example»ab we can rewrite (15) as

mohg— A L

j=1...,n

(18)

a=1...,m.

il =T L—-2 =1...,
= S n (19)
nhj—Ae— 5 M Ag— Ay — i
H—i Z_H—A Y a=1....m
j=1hj— Aot s p=i Op — Do Tl
where
A= [(J7H+ Dcotk;/2) + (J 1 — D) tan(k; /2)] for e=+1 (20)
and
Aj = [+ Dtank;/2) + (J 71 — 1) cot(k; /2)] for e=-1 (21)

These solutions correspond to the model Ajat: 0, ¢ = +1 and at co® coshy = +1,
¢ = —1, and to model B at = 0 for both signs ot.

To summarize, we have presented two new two-parameter integrable models that
generalize the Hubbard and supersymmetri¢ models, and derived their Bethe ansatz
equations through the coordinate Bethe ansatz method. Our results certainly motivate
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subsequent studies. One of them is the calculation of the phase diagram and critical exponents
for arbitrary values ofy and®. Another interesting point raised by this letter, is the possible
existence of a generalizettmatrix that reproduces that of the Hubbard model [29] at special
points. It will also be worthwhile to generalize the model (1) for the acase 2 and to
construct, in such way, the quite interesting Hamiltonian of the multi-colour Hubbard model
[18, 30].

We thark M J Martins and V Rittenberg for useful discussions and A Lima-Santos and J de
Luca for interesting conversations. This work was supported in part by Conselho Nacional de
Desenvolvimento Cieifico e Tecnobgico-CNPq, Brazil.
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