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Abstract. Two new one-dimensional fermionic models depending on two independent parameters
are formulated and solved exactly by the Bethe ansatz method. These models connect continuously
the integrable Hubbard and supersymmetrict–J models.

The Hubbard model together with thet–J model are the most studied models describing
strongly correlated electrons. In one dimension they are a paradigm of exact integrability in
the physics of strongly correlated systems. In these models we have beyond a hopping termt

(kinetic energy) an on-site Coulomb interactionU , in the case of the Hubbard model [1], or a
spin–spin interactionJ , in the case of thet–J model [2–4].

An interesting question in the arena of exact integrable models, that we wish to solve in
this letter, concerns the existence of a general exactly solvable model containing these two
well known models as particular cases. After the exact solution of these models [1–4], several
extensions which keep exact integrability were proposed, either by introducing correlated
hopping terms [5–12], or by including an anisotropy (q-deformation) [13–17] (see [18] for
a review). However, none of these extensions contains simultaneously the Hubbard andt–J
models as particular cases. In this letter we present two new integrable two-parameter models
having this nice property. These models contain, as particular cases, the Hubbard model [1]
and the Essler–Korepin–Schoutens model [6], as well as itsq-deformed versions [14, 16, 17].
We remind the reader that the latter model [6] contains the supersymmetrict–J model in a
particular sector.

Our starting point is the introduction of a general one-dimensional Hamiltonian containing
all the possible nearest-neighbour interactions appearing in different exactly integrable models
with four degrees of freedom per site. This Hamiltonian thus contains correlated-hopping terms
in the most general form, spin–spin interactions as in the anisotropic version of thet–J model,
Hubbard on-site interaction, as well as pair hopping terms and three- and four-body static
interactions between electrons. The Hamiltonian is given by

H = −
L∑
j=1

Hj,j+1
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Hj,k =
∑
α(6=β)

(c+
j,αck,α + h.c.)[1 + tα1njβ + tα2nkβ + t ′αnjβnkβ ]

+
∑
α(6=β)

(J c+
j,αc

+
k,βcj,βck,α + Vαβnj,αnk,β + Vα,αnj,αnk,α) +Unj,1nj,2 (1)

+tp(c
+
j,1c

+
j,2ck,2ck,1 + h.c.) + V (1)3 nj,2nk,1nk,2 + V (2)3 nj,1nk,1nk,2

+V (3)3 nj,1nj,2nk,2 + V (4)3 nj,1nj,2nk,1 + V4nj,1nj,2nk,1nk,2

wherecj,α andnj,α = c+
j,αcjα(α = 1, 2) are the standard fermionic and density operators. The

physical relevance of such a Hamiltonian is discussed, e.g., in [19, 20].
In (1) we have included a correlated-hopping interaction in its most general form, which

depends ontα1, tα2 andt ′α(α = 1, 2). In the theory of exactly integrable systems, models with
such kinetic terms were first studied in [5, 21] and their possible physical relevance is given
in [22]. In the limit tαβ = −t ′α = −1, this term gives a constrained hopping term and the
condition for integrability gives the anisotropict–J model atJ = e−γ V12 = eγ V21 = ±1,
tp = U = V

(i)
3 = V4 = 0†. The Hubbard model is obtained by destroying the correlation

in the hopping term(tαβ = t ′α = 0) and by settingtp = J = V12 = V21 = V (i)3 = V4 = 0.
For the case whereJ = 0 the conditions for integrability have been investigated in [11, 12],
and a two-parameter generalization of the correlated-hopping model has been contructed in
[12]. Recently, some one-parameter models withJ 6= 0 have been constructed [16, 17, 23]
on the basis of solutions of Yang–Baxter equations of vertex models [16, 24, 25]. In this letter
we present the results of our investigation on the integrability conditions in the caseJ 6= 0,
Vαα = 0 andtαβ 6= 1.

We require the wavefunctions of the Hamiltonian (1), withn electrons, to be given by the
Bethe ansatz

|n〉 =
∑
Q

9(rQ1, αQ1; . . . ; rQn
, αn)|rQ1, . . . , rQn

〉

9(r1, α1; . . . ; rn, αn) =
∑
P

A
αQ1 ...αQn
P1...Pn

n∏
j=1

x
rQj
Pj

xj = exp(ikj )
(2)

whereQ is the permutation of then particles such that 16 rQ1 6 rQ2 6 · · · 6 rQn
6 L, and

α = 1, 2 denotes the kind of particles (up or down spin). The sum is over all permutations
P = [P1 . . . Pn] of numbers 1, 2, . . . , n. In the case where we have a pair at the position
rQl
= rQl+1, the ansatz is modified to

9(r1, α1; . . . ; rn, αn) =
∑
P

A
αQ1 ...αQl αQl+1 ...αQn
P1...PlPl+1...Pn

n∏
j=1

x
rQj
Pj

(3)

where the bar at thelth and(l+1)th positions of the superscript indicates the pair location. The
general case with many isolated particles and pairs follows from (2) and (3). The coefficients
A
αQ1 ...αQn
P1...Pn

from regions other thanRQ = [rQ1 6 · · · 6 rQn
] are connected to each other by the

elements of the two-particleS-matrix

A
...αβ...

...P1P2...
= −

∑
α′,β ′=1,2

S
αβ

α′β ′(kP1, kP2)A
...β ′α′...
...P2P1...

.

As a necessary condition for integrability of the model under consideration, the two-particle
scattering matrix has to satisfy the Yang–Baxter relations [26, 27]. Although we have not
solved this problem in the general case we were able to establish the exact integrability of (1)

† For these parameters the number of double occupied sites are conserved and thet–J model is obtained in the sector
where there are no double occupied sites.
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in the two new cases, which we denote by models A and B:
(A)

t1 = εt2 = t3 = εt4 = sinϑ t5 = ε
J = −εtp = −ε

2
U = V12e

2η = V21e
−2η = cosϑ

V11 = V22 = V (1)3 = V (2)3 = V (3)3 = V (4)3 = V4 = 0

(4)

(B)

t1 = εt2 = εt3e2η = t4e−2η = sinϑ t5 = ε
J = −εtp = V12e

2η = V21e
−2η = cosϑ

U = 2tp +
sin2 ϑ

cosϑ
(eη − εe−η)2

V11 = V22 = V (2)3 = V (4)3 = V4 = 0 V
(1)
3 = −V (3)3 = V12− V21

(5)

where in (4) and (5) we denote

t11 = t4 − 1 t12 = t3− 1 t21 = t1− 1 t22 = t2 − 1

t ′1 = t5− t3− t4 + 1 t ′2 = t5− t1− t2 + 1

whereε = ±1 andϑ andη are free complex parameters.
For ϑ → 0 both cases reduce to the anisotropict–J model studied in [6, 14], which is

the generalization of the supersymmetrict–J model [2–4]. More exactly, in this limit we
obtain theq-deformed extended Hubbard model [6, 14] in the sector where we have no double
occupied sites and where, in fact, it corresponds to the anisotropict–J model. Moreover,
from (1), (4), (5) we see that the model B withη = iϑ , ε = +1, and the model A withη = 0,
ε = −1, reduce to the non-trivialq-deformations of the extended Hubbard model considered
in [16, 17], respectively. These models have been constructed on the basis of the solution of
the Yang–Baxter equation for theR-matrix which was found by [16, 25]. In the opposite
limit, ϑ → π/2, both models withε = 1 give us the Hubbard model, provide in model A
η = [ln(U ′)− ln(cosϑ)]/2, and in model Bη = 1

2

√
U |ϑ − π/2|.

The non-vanishing elements of the two-particleS-matrix of both models satisfy

Sαααα = 1 S
αβ

αβ = Sβαβα
S
βα

αβ (x1, x2)S
αβ

αβ (x2, x1) = −Sαββα(x2, x1)S
αβ

αβ (x1, x2)
(6)

and for the different models are given by
(A)

S
αβ

αβ (x1, x2) = (x1− x2)b12(x1, x2)/a1(x1, x2)

S
αβ

βα(x1, x2) = [c0(x1, x2) + b1(x1, x2)x1 + b2(x1, x2)x2 − gx1x2]/a1(x1, x2)
(7)

(B)

S
αβ

αβ (x1, x2) = (x1− x2)b12(x1, x2)/a2(x1, x2)

S
αβ

βα(x1, x2) = [c0(x1, x2) + (x1e−2η + x2e2η)b12(x1, x2)]/a2(x1, x2)
(8)

whereα < β and

a1(x1, x2) = c0(x1, x2) + [b1(x1, x2) + b2(x1, x2)]x2 − gx2
2

a2(x1, x2) = c0(x1, x2) + (e2η + e−2η)b12(x1, x2)x2

b1(x1, x2) = (t21 + εJ 2e−2η)D12 + Je−2η(x1 + x2)

b2(x1, x2) = (t21 + εJ 2e2η)D12 + Je2η(x1 + x2)

b12(x1, x2) = εD12 + J (x1 + x2)

c0(x1, x2) = (U − 2tp)x1x2 + [tpD12− x1− x2]D12

D12 = 1 +x1x2 g = cosϑ sin2 ϑ(eη − εe−η)2.
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To complete the proof of the Bethe ansatz (2) we must check the eigenvalue equations in
the sector where the total number of particles isn = 3, 4. This gives a complicated system of
equations. A manipulation of this problem on a computer gives us the values of the coupling
constantsV (i)3 andV4 in equations (4) and (5). The periodic boundary conditions on the lattice
with L sites lead us to the Bethe ansatz equations. In order to obtain these equations we must
diagonalize the transfer matrix of a related inhomogeneous six-vertex model with Boltzmann
weights (6). This latter problem can be solved by standard algebraic methods [28]. The Bethe
ansatz equations are written in terms of the variablesxj (xj = exp(ikj )) and additional spin
variablesx(1)α .

For both models we have

(xj )
L = (−1)n−1

m∏
α=1

S12
12(xj , x

(1)
α ) j = 1, . . . , n

n∏
j=1

S12
12(xj , x

(1)
α ) =

m∏
β=1,β 6=α

S12
12(x

(1)
β , x

(1)
α )

S12
12(x

(1)
α , x

(1)
β )

j = 1, . . . , m

(9)

wherem 6 L is the number of particles with up spins. The eigenenergies of the system are
given by

E = −
n∑
j=1

(xj + x−1
j ). (10)

An important step toward the solution of integrable models, in the thermodynamic limit,
is the definition of new variablesλj = λ(xj ), in terms of whichS12

12(xi, xj ) becomes a function
only of the differenceλi − λj . The corresponding integral equation derived from (9) will then
have difference kernels. Following Baxter [27], we introduce a function

λ(x1, x2) = 1

2
ln

1 + e−2r8(x1, x2)

1 + e2r8(x1, x2)
8(x1, x2) = S12

12(x1, x2) (11)

wherer is the Baxter parameter, for which our models has the values

cosh 2r =
{
εt21 + J 2 cosh 2η for model A

cosh 2η for model B.
(12)

It follows (see [27]) that the functionλ(x1, x2) has the nice property

λ(x1, x3) = λ(x1, x2) + λ(x2, x3) (13)

which implies

λ(x1, x2) = λ(x1)− λ(x2). (14)

Using (11) and (14) we rewrite the Bethe ansatz equations in the difference form

(xj )
L =

m∏
α=1

sinh(λj − λ(1)α − r)
sinh(λj − λ(1)α + r)

j = 1, . . . , n

n∏
j=1

sinh(λj − λ(1)α − r)
sinh(λj − λ(1)α + r)

= −
m∏
β=1

sinh(λ(1)β − λ(1)α − 2r)

sinh(λ(1)β − λ(1)α + 2r)
α = 1, . . . , m.

(15)

From (13), (14) we haveλj = λ(xj ) with λ(x) = λ(x, µ) + ν, whereµ andν have arbitrary
values. For example, we may chooseµ = 0 andν = r for our convenience. The function
8(x, 0) has the same form for both models, namely

λ(x) = 1

2
ln

1 + e−2r8(x, 0)

1 + e2r8(x, 0)
+ r 8(x, 0) = −x(ε + Jx)

(εJ + x)
. (16)
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The inversion of (16) gives us

x = −J
−1 coshλ sinhr ±

√
sinh2 λ cosh2 r + cosh2 λ sinh2 r tan2 ϑ

sinh(λ + r)
ε = +1

x = J−1 sinhλ coshr ±
√

cosh2 λ sinh2 r + sinh2 λ cosh2 r tan2 ϑ

sinh(λ + r)
ε = −1.

(17)

It is clear from (16) that the Bethe ansatz equations have the same form for both models at the
same values of the parametersr andϑ .

Let us consider the Bethe ansatz equations in some limiting cases. At cosϑ → 1 we
obtainxj = sinh(λj − r)/ sinh(λj + r) and (15) gives us the Bethe ansatz equations of the
anisotropic supersymmetrict–J model, with anisotropyr [14]. In our derivation of (15) the
amplitudes in the eigenfunctions, corresponding to double site occupations, are related to those
with single occupancy. Strictly at cosϑ = 1, this assumption is not valid, unless there is no
double occupancy as in thet–J model, and we should restrictn 6 L in (15).

In the limiting case of model B withε = 1, where cosϑ → 0, η → 0, with U =
4η2/ cosϑ fixed we obtain from (5) the Hubbard model with on-site interactionŨ = U . The
relation (12) gives usr = √U cos(ϑ)/2 and by choosingλj = i(π/2− 2 sink

√
cos(ϑ)/U),

λ
(1)
j = i(π/2− 23j

√
cos(ϑ)/U) we obtain the Bethe ansatz equations of the Hubbard model

[1]

eikjL =
m∏
α=1

sinkj −3j − iŨ/4

sinkj −3j + iŨ/4
j = 1, . . . , n

n∏
j=1

sinkj −3α + iŨ/4

sinkj −3α − iŨ/4
= −

m∏
β=1

3β −3α + iŨ/2

3β −3α − iŨ/2
α = 1, . . . , m.

(18)

The Hubbard limit can also be obtained in the limiting case of model A withε = 1 where
cosϑ → 0,η→∞, butŨ = V21 = e2η cos(ϑ)/2 kept fixed. In this case we see from (5) that
shiftingcj,2→ cj−1,2, we recover the Hubbard model with on-site interactionsŨ = V21. The
Bethe ansatz equations (18) are obtained from (15) by choosingλj = i(π/2− 2e−η sinkj )
andλ(1)α = i(π/2− 2e−η3α).

It is also interesting to observe that rational Bethe ansatz equations can also be obtained
for both models in the limit wherer → 0 or r → iπ/2. We should remark that even in this
case we obtain new integrable quantum chains. For example, atr → 0 we can rewrite (15) as

eikjL =
m∏
α=1

λj −3α + i
2

λj −3α − i
2

j = 1, . . . , n

n∏
j=1

λj −3α − i
2

λj −3α + i
2

= −
m∏
β=1

3β −3α − i

3β −3α + i
α = 1, . . . , m

(19)

where

λj = 1
4[(J−1 + 1) cot(kj /2) + (J−1− 1) tan(kj /2)] for ε = +1 (20)

and

λj = [(J−1 + 1) tan(kj /2) + (J−1− 1) cot(kj /2)]
−1 for ε = −1. (21)

These solutions correspond to the model A atη = 0, ε = +1 and at cosϑ coshη = ±1,
ε = −1, and to model B atη = 0 for both signs ofε.

To summarize, we have presented two new two-parameter integrable models that
generalize the Hubbard and supersymmetrict–J models, and derived their Bethe ansatz
equations through the coordinate Bethe ansatz method. Our results certainly motivate
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subsequent studies. One of them is the calculation of the phase diagram and critical exponents
for arbitrary values ofη andϑ . Another interesting point raised by this letter, is the possible
existence of a generalizedR-matrix that reproduces that of the Hubbard model [29] at special
points. It will also be worthwhile to generalize the model (1) for the caseα > 2 and to
construct, in such way, the quite interesting Hamiltonian of the multi-colour Hubbard model
[18, 30].

We thank M J Martins and V Rittenberg for useful discussions and A Lima-Santos and J de
Luca for interesting conversations. This work was supported in part by Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnoĺogico-CNPq, Brazil.

References

[1] Lieb E H and Wu F Y 1968Phys. Rev. Lett.201445
[2] Sutherland B 1975Phys. Rev.B 123795.
[3] Schlottmann P 1987Phys. Rev.B 365177
[4] Wiegmann P 1988Phys. Rev. Lett.60821
[5] Bariev R Z 1991J. Phys. A: Math. Gen.24L549

Bariev R Z 1991J. Phys. A: Math. Gen.24L919
[6] Essler F H L, Korepin V E and Schoutens K 1992Phys. Rev. Lett.682960

Essler F H L, Korepin V E and Schoutens K 1993Phys. Rev. Lett.7073
[7] Essler F H L and Korepin V E 1994Exactly Solvable Models of Strongly Correlated Electrons(Singapore:

World Scientific)
[8] Bracken A J, Gould M D, J R and Zhang Y-Z 1995Phys. Rev. Lett.742768
[9] Massarani Z 1995J. Phys. A: Math. Gen.281305

Massarani Z 1995J. Phys. A: Math. Gen.286423
[10] Alcaraz F C and Bariev R Z 1998J. Phys. A: Math. Gen.31L233
[11] Bed̈urftig G and Frahm H 1995Phys. Rev. Lett.745284
[12] Bariev R Z, Kl̈umper A and Zittartz J 1995Europhys. Lett.3285
[13] Perk J H H andSchultz C L 1981Phys. Lett.A 84407

Schultz C L 1983PhysicaA 12271
[14] Bariev R Z 1994Phys. Rev.B 491474

Bariev R Z 1994J. Phys. A: Math. Gen.273381
[15] Foerster A and Karowski M 1993Nucl. Phys.B 408512
[16] Gould M D, Links J R and Zhang Y-Z 1997J. Phys. A: Math. Gen.304313
[17] Martins M J and Ramos P B 1997Phys. Rev.B 566376
[18] Schlottmann P 1997Int. J. Mod. Phys.B 11355
[19] de Boer J, Korepin V E and Schadschneider A 1995Phys. Rev. Lett.74789
[20] Castellani C, Castro C Di, Feinberg D and Ranninger J 1988Phys. Rev. Lett.43821

Castellani C, Castro C Di and Grilli M 1994Phys. Rev. Lett.723626
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